skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rangari, Vijaya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2026
  2. Abstract Surface segregation is a ubiquitous phenomenon driven by minimization of the total free energy. In this paper we study surface segregation in multicomponent magnetic Bismuth ferrite nanoparticles alloyed with varying amounts of Dysprosium, Zinc and Titanium. We employ surface and bulk sensitive spectroscopic probes to unravel a significant surface segregation of Bismuth oxide and Titanium oxide. High coercive fields of BiFe0.95Ti0.05O3(BFTO) and BiFe0.96(Zn, Ti)0.02O3(BFZTO) at room temperature reveal that they have a strong exchange bias. This suggests that the Titanium oxide is magnetically active, and there is a Ti induceddoferromagnetism in action between these nanoparticles. We show, with the addition of Dy2O3, the Ti induceddoferromagnetism is suppressed making (BDFZTO) superparamagnetic. We observe that all three differently alloyed Bismuth ferrite nanoparticles show a non-saturating paramagnetic background. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  3. Free, publicly-accessible full text available March 1, 2026
  4. High-entropy alloys (HEAs) are a class of multi-element materials that exhibit unique structural and functional properties. This study reports on the synthesis and characterization of a superconducting HEA, (NbTa)0.55(HfTiZr)0.45 fabricated using the vacuum arc melting technique. Scanning electron microscopy and energy-dispersive x-ray spectroscopy were employed to analyze the material's morphology and composition. X-ray diffraction analysis revealed a single-phase body-centered cubic (BCC) structure with a measured nanoindentation hardness of 6.4 GPa and Young's modulus of 132 GPa. This HEA superconductor was investigated by x-ray diffraction at Beamline 13BM-C, Advanced Photon Source, and the BCC phase was stable to the highest pressure of 50 GPa. Superconductivity was characterized by four-probe resistivity measurements in a quantum design physical property measurement system, yielding a superconducting transition temperature (Tc) of 7.2 K at ambient pressure and reaching a maximum of 10.1 K at the highest applied pressure of 23.6 GPa. The combination of high structural stability enhanced superconducting performance under pressure and superior mechanical properties highlights (NbTa)0.55(HfTiZr)0.45 as a promising superconductor under extreme environments. 
    more » « less
  5. Abstract This study compares the growth cycles and spatial distribution of dust cloud for titania and carbonaceous dusty nanoparticles in capacitively coupled radiofrequency plasmas, with and without the presence of a weak magnetic field of approximately 500 Gauss. Findings on cycle time, growth rate, and spatial distribution of dust cloud are discussed. The growth of nanoparticles in these plasmas is cyclic, with particles reaching their maximum size and subsequently moving out of the plasma, followed by the generation of a new particle growth cycle. The presence of the magnetic field speeds up the growth cycle in both plasma. The magnetic field also makes the spatial distribution of the two dust cloud different from each other. Langmuir probe measurement of the background plasma parameters such as electron temperature and floating potential reveal radial variations in floating potential but not electron temperature. Furthermore, the magnetic field changes the radial variation of floating potential. These measurements, however, are not sufficient to explain why the two dust clouds appear differently. It is possible that the differences occur due to a gradient in the radial distribution of the magnetic field. 
    more » « less
  6. Matthew, A; Radhika, P; Vijaya, R (Ed.)
    Abstract In the present work, we report the effect of low‐temperature plasma treatment on thermal, mechanical, and biodegradable properties of polymer composite blown films prepared from carp fish scale powder (CFSP) and linear low‐density polyethylene (LLDPE). The CFSP was melt compounded with LLDPE using a filament extruder to prepare 1, 2, and 3 wt.% of CFSP in LLDPE polymer composite filaments. These filaments were further pelletized and extruded into blown films. The blown films extruded with 1, 2, and 3 wt.% of CFSP in LLDPE were tested for thermal and mechanical properties. It was observed that the tensile strength decreased with the increased loading content of CFSP, and 1% CFSP/LLDPE exhibited the highest tensile strength. To study the effect of low‐temperature plasma treatment, 1% CFSP/LLDP polymer composite with high tensile strength was plasma treated with O2and SF6gas before blow film extrusion. The 1% CFSP/LLDPE/SF6‐extruded blown films showed increased thermal decomposition, crystallinity, tensile strength, and modulus. This may be due to the effect of crosslinking by the plasma treatment. The maximum thermal decomposition rate, crystallinity %, tensile strength, and modulus obtained for 1% CFSP/LLDPE/SF6film were 500.02°C, 35.79, 6.32 MPa, and 0.023 GPa, respectively. Furthermore, the biodegradability study on CFSP/LLDPE films buried in natural soil for 90 days was analyzed using x‐ray fluorescence. The study showed an increase in phosphorus and calcium mass percent in the soil. This is due to the decomposition of the hydroxyapatite present in the CFSP/LLDPE biocomposite. 
    more » « less
  7. ABSTRACT Multilayer packaging is commonly used in the food industry to improve product preservation by combining materials with specific properties for optimal protection. Ethylene vinyl alcohol (EVOH) is highly valued for its barrier properties against air and moisture. The mechanical properties of EVOH films are influenced by both the ethylene content, which affects crystallinity and barrier performance, and the thickness of the EVOH layer, which affects the film's mechanical strength. This study develops mathematical models to explore the relationship between EVOH film thickness, ethylene content, and mechanical properties, such as tensile strength, elongation at break, and elastic modulus. Using RSM with I‐optimal design, the optimal conditions for EVOH films are identified at a thickness of 0.03 mm and 48 mol% ethylene content. The model predicts values of 25.178% for elongation at break, 3077.865 MPa for elastic modulus, and 97.444 MPa for tensile strength. These predictions are validated through ANOVA, confirming the statistical significance of the model. Experimental results show achieved values of 27.119% for elongation, 3437.811 MPa for elastic modulus, and 107.308 MPa for tensile strength, demonstrating model accuracy. To further validate these findings, EVOH films are characterized by SEM, FTIR spectroscopy, and TGA, providing valuable insights into the structural and functional properties for food packaging. 
    more » « less