skip to main content


Search for: All records

Creators/Authors contains: "Rangari, Vijaya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 11, 2024
  2. Bismuth ferrite (BiFeO 3 ) nanocomposites were synthesized using a novel nano-agitator bead milling method followed by calcination. Bismuth oxide and iron oxide nanoparticles were mixed in a stoichiometric ratio and milled for 3 h and calcined at 650 °C in air. X-ray diffraction with Rietveld refinement, scanning electron microscopy, and transmission electron microscopy techniques were used to elucidate the structure of BiFeO 3 . The particle diameter was found to be ∼17 nm. Magnetic and electrical measurements were performed, and these results were compared with those of similar methods. Mostly, BiFeO 3 was obtained with minor secondary phase formation. The resulting powder was weakly ferromagnetic with a remnant magnetization of 0.078 emu/g. This can be attributed to residual strain and defects introduced during the milling process. Electrical testing revealed a high leakage current density that is typical of undoped bismuth ferrite. 
    more » « less
  3. Microwave-induced plasma was used to anneal precursor powders containing five metal oxides with carbon and boron carbide as reducing agents, resulting in high entropy boride ceramics. Measurements of hardness, phase structure, and oxidation resistance were investigated. Plasma annealing for 45 min in the range of 1500–2000 °C led to the formation of predominantly single-phase (Hf, Zr, Ti, Ta, Mo)B2 or (Hf, Zr, Nb, Ta, Mo)B2 hexagonal structures characteristic of high entropy borides. Oxidation resistance for these borides was improved by as much as a factor of ten when compared to conventional commercial diborides. Vickers and nanoindentation hardness measurements show the indentation size effect and were found to be as much as 50% higher than that reported for the same high entropy boride configuration made by other methods, with average values reaching up to 38 GPa (for the highest Vickers load of 200 gf). Density functional theory calculations with a partial occupation method showed that (Hf, Zr, Ti, Ta, Mo)B2 has a higher hardness but a lower entropy forming ability compared to (Hf, Zr, Nb, Ta, Mo)B2, which agrees with the experiments. Overall, these results indicate the strong potential of using microwave-induced plasma as a novel approach for synthesizing high entropy borides. 
    more » « less
  4. Abstract

    Egg waste is a major contributor to global food waste, accounting for 15% of discarded food in the United States. Typically, eggs have a shorter shelf life at room temperature and are preserved in refrigeration from production to consumption. However, maintaining constant refrigeration is energy‐intensive and expensive. Here, a bionanocomposite coating has been developed that incorporates each element of eggs – egg white, yolk, and eggshell – to increase the shelf life of fresh eggs without requiring further refrigeration. The quality of eggs has been successfully preserved for up to three weeks at room temperature. The coated eggs maintain the highest grade (AA) and exhibit improved Haugh Unit (HU), Yolk Index (YI), and pH compared to uncoated eggs. The coating reduces weight loss by ≈37% with an increase in HU (≈12.5%) and YI (≈13.9%). Morphological analysis reveals strong adhesion of the coating to the eggshell surface, showcasing promising barrier properties. The coating demonstrates an optimal combination of oxygen permeability (≈12.2 cm3 µm m−2 d−1 kPa−1) and water vapor transmission (≈31.5 g mm m−2per day) with excellent antimicrobial properties. Overall, this approach of repurposing eggs into a high‐performance coating shows a promising viable alternative to refrigeration and a solution to combat egg waste.

     
    more » « less
  5. Abstract

    Flexible nanocomposite films, with cobalt ferrite nanoparticles (CFN) as the ferromagnetic component and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) copolymer as the ferroelectric matrix, were fabricated using a blade coating technique. Nanocomposite films were prepared using a two-step process; the first process involves the synthesis of cobalt ferrite (CoFe2O4) nanoparticles using a sonochemical method, and then incorporation of various weight percentages (0, 2.5, 5, and 10%) of cobalt ferrite nanoparticles into the PVDF-TrFE to form nanocomposites. The ferroelectric polarβphase of PVDF-TrFE was confirmed by x-ray diffraction (XRD). Thermal studies of films showed notable improvement in the thermal properties of the nanocomposite films with the incorporation of nanoparticles. The ferroelectric properties of the pure polymer/composite films were studied, showing a significant improvement of maximum polarization upon 5wt% CFN loading in PVDF-TrFE composite films compared to the PVDF-TrFE film. The magnetic properties of as-synthesized CFN and the polymer nanocomposites were studied, showing a magnetic saturation of 53.7 emu g−1at room temperature, while 10% cobalt ferrite-(PVDF-TrFE) nanocomposite shows 27.6 emu/g. We also describe a process for fabricating high optical quality pure PVDF-TrFE and pinhole-free nanocomposite films. Finally, the mechanical studies revealed that the mechanical strength of the films increases up to 5 wt% loading of the nanoparticles in the copolymer matrix and then decreases. This signifies that the obtained films could be suited for flexible electronics.

     
    more » « less
  6. Owing to its robustness, ability to achieve complex geometries, and ease of use, 3D printing has become one of the noteworthy applications in the field of engineering. Polycarbonate has become a thermoplastic of interest due to its excellent mechanical and optical properties. Especially when infused with nanosilica, polycarbonate becomes a potential candidate for 3D printing with enhanced properties. Polycarbonate nanocomposite filaments infused with AEROSIL (nanosilica) have been melt extruded with various filler loadings of 0.5, 1, and 3 wt% and are then 3D printed. The thermal analysis of the filaments has shown that thermal stability of the filaments increases with increase in filler loading. Tensile tests have shown that addition of nanosilica have enhanced the mechanical properties of the filaments as well as 3D printed films. The addition of silica in low concentrations exhibit higher transmittance of UV light, as silica restricts the mobility of polycarbonate. Despite 3D printing causing voids in bulk materials, silica at low concentration (0.5 and 1 wt%) can improve the mechanical and optical properties. These improvements are promising for applications in thin film interfaces and the automotive industry. 
    more » « less